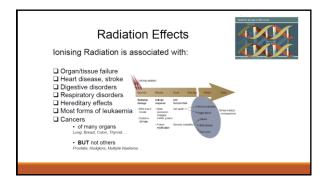
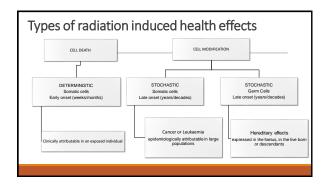

Exploring the Benefit/Risk of Radiation for Patients and Communication and Understanding for the Patient

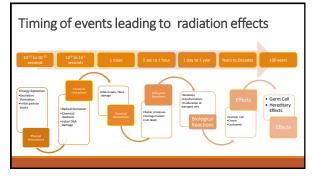
COLIN WALSH, MEDICAL PHYSICIST, ST. JAMES'S HOSPITAL

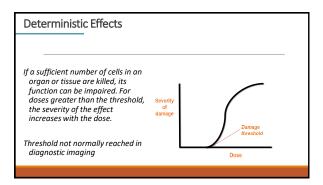
Overview

- oJustification
- oWhat is known about radiation risk
- Imaging Modalities and Risk
- Ocumulative dose and Risk
- •Communicating Risk




Rete	rring	
	Table 9. Socratic questions' for referring clinic	tians when considering imaging procedures
	What the referrer should answer	Preventable, wanteful medical agroupes to radiation
	Has it been done already?	Unsuccessarily repeating investigations that have been already does.
	Do I need #7	Undertaking investigations when results are unlikely to effect patient management
	Do I need it now?	investigating too early
	is this the best investigation?	Doing the wrong investigation
	Have I explained the problem?	Failing to provide appropriate clinical information and quantities that the imaging investigation should answer
		ten been used in ratiology-education (2ns et al., 2011)

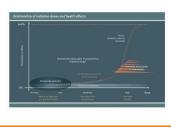




Exploring Radiation Risk

Deterministic effects

Cedars-Sinai radiation overdoses went cedars-shift radiation overdoses went unseen at several points. The dosage ---eight times the programmed amount ---appeared on technicians' screens during CT scans. Doctors also missed the problem. 80 of 206 stroke patients who had received the overdose experienced hair loss. Experts say blind trust of medical machinery is a growing concern. Report on Overdose in CT



A stochastic effect is caused by damage to a cell that produces genetically transformed but transformed but reproductively viable descendents. Cancer and hereditary effects of radiation are considered to be stochastic. The probably of a stochastic effect, instead of its severity increases with

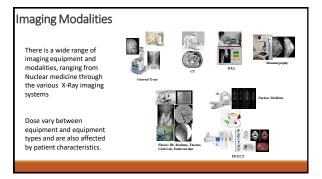
Stochastic effects

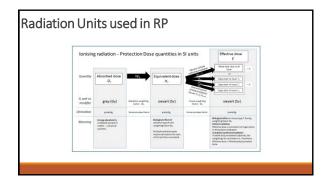
its severity, increases with

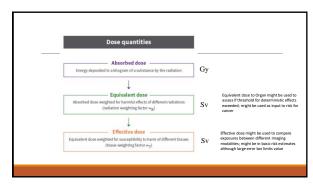
dose.

5% per Sv

5 people from every 100 exposed to 1 Sv of radiation will (may) get a fatal cancer

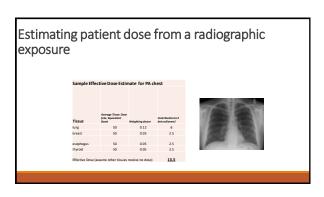

or


Potenitally, 5 people in every 100,000 exposed to 1 mSv

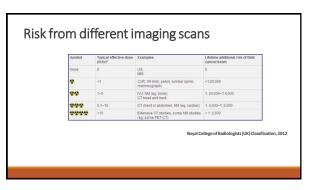

Assumes a Linear No Threshold model, with risk linearly associated with dose

Low dose radiation & risk ALITY BY AGE AT

Dose, Imaging Modalities and Risk

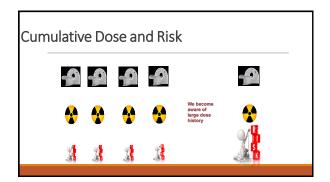

Equipment exposure values

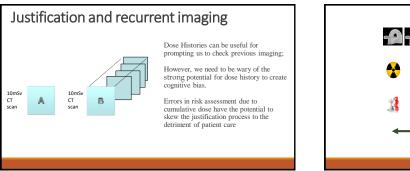

One problem for estimating dose is that Radiation equipment cannot provide a direct measure of patient dose: however, we can estimate patient dose based on the measures of radiation the equipment provides.

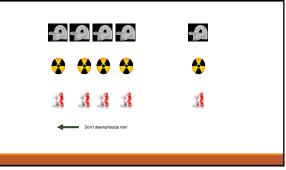

Radiographic and fluoroscopy systems report DAP values for exposures or exams

CT units provide at CTDI or DLP value for each exam

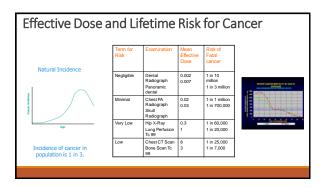
MGD (mGy) is measured or calculated by Mammography X-Ray units and is a measure of dose to the breast




Recurrent Imaging and Risk


Should the justification of medical exposures take account of radiation risks from previous examinations?

Communicating Risk


Explaining Risk

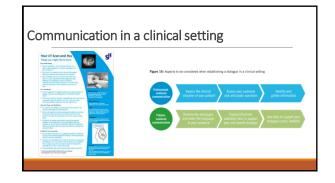
Deterministic

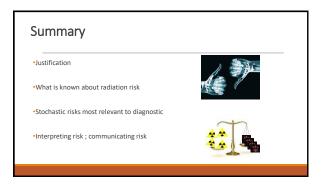
• Predictable and avoidable, if we limit. Straightforward to describe

Stochastic

 Semi-predictable, but unavoidable, so we have to minimise the risk. Long latency; probabilistic: difficult to explain

Medical Radiation risk @ 5% per Sv			
Procedure	Typical Effective dose (mSv)	No. in a million risk	
Dental X-Ray	0.011	0.5	
Chest X-Ray	0.02	1	
Abdomen X-Ray	0.7	34	
Barium swallow	1.8	90	
CT Abdomen	10	500	
NM Bone Scan	4	200	


Examples of other One in a Million Risks


Smoking 1 cigarette

- Travelling 50 miles by car
- •Travelling 25 miles by air
- •Rock climbing for 1.5 minutes •Canoeing for 6 minutes
- Being aged 60 for 20 minutes (30 for 9 hours)
- •Exposure to 20µSv

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text>

